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We calculate the density-density response function and electron self-energy for undoped bilayer graphene
within the random phase approximation. We show that the quasiparticle decay rate scales linearly with the
quasiparticle energy, and quasiparticle weight vanishes logarithmically in the low-energy limit, indicating
non-Fermi-liquid behavior. This is a consequence of the absence of a Fermi surface for neutral bilayer
graphene and corresponding larger phase space available for scattering processes. Experimental consequences
of our results as well as their differences from those of single-layer graphene are discussed.
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I. INTRODUCTION

The isolation and subsequent identification of graphene,
an atomically thin electron system, has led to intense experi-
mental and theoretical interest.1 Recent experimental
progress1 has also led to techniques that enable isolation and
study of systems with a small number of graphene layers, of
particular importance is AB-Bernal stacked bilayer
graphene,2 a system which shares some features both with
graphene and two-dimensional electron gas �2DEG�,3 how-
ever at the same time different from both. Neglecting trigo-
nal warping balanced bilayer graphene can be identified as a
zero-gap semiconductor with quadratic dispersion; for un-
doped bilayer graphene the Fermi energy lies at the neutral
Fermi point, described as the point where the degenerate
particle-hole bands meet. Collectively these systems can be
classified as chiral 2DEGs.4 Electron-electron interactions in
chiral 2DEGs can lead to interesting quasiparticle properties,
for example quasiparticle velocity enhancement5 in graphene
due to the presence of unscreened Coulomb interactions.
Most of the physics in this Rapid Communication focuses on
the difference in graphene and bilayer graphene’s chiral
2DEG.

In this Rapid Communication we investigate the quasipar-
ticle properties of undoped bilayer graphene due to electron-
electron interactions. Short-ranged interactions for quadratic
dispersion in two dimensions are marginal6–8 at the tree level
while Coulomb interactions are relevant; this already points
to the possibility of non-Fermi-liquid behavior. Unlike neu-
tral graphene where electron-electron interactions are un-
screened, Coulomb interactions in bilayer graphene are
screened due to the presence of a finite density of states, and
dynamically generate a momentum scale �=me2 /� propor-
tional to the inverse Thomas-Fermi screening length qTF
=4� log�4�. Below this scale this system resembles one with
effective short-ranged interactions. Based on the scaling
form of the density-density response function we demon-
strate within the random phase approximation �RPA� that
there is no renormalization to the electron effective mass,
while the imaginary part of the electron self-energy Im�
�� below the screening scale. As a result the quasiparticle
has a logarithmically vanishing spectral weight at low ener-
gies, indicative of non-Fermi-liquid behavior. This is very
different from a 2DEG where the phase space available for
scattering is limited by the energy thereby giving energy

squared dependence for the quasiparticle decay rate, and the
quasiparticle weight remains finite at the Fermi surface. We
argue this non-Fermi-liquid behavior is a consequence of the
absence of a Fermi surface for neutral bilayer graphene and
corresponding larger phase space available for scattering
processes, which should be a robust result beyond RPA. The
long-wavelength behavior of the electron spectral function
A�k ,��=A�k ,−�� is plotted in Fig. 1, which can be com-
pared with angle-resolved photoemission spectroscopy mea-
surements currently being employed to study the effects of
interactions in graphene systems.9

II. BILAYER GRAPHENE EFFECTIVE MODEL

The low-energy properties of Bernal stacked bilayer
graphene can be adequately described by quasiparticles with
parabolic dispersion3 exhibiting a Berry phase of 2�. Ne-
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FIG. 1. �Color online� Intensity plot of electron spectral function
at long wavelengths and low energies in units of m /�2. The solid
line corresponds to the noninteracting dispersion. m is the electron
effective mass and �=me2 /� is proportional to qTF the Thomas-
Fermi screening wave vector. The quasiparticle width �or scattering
rate� is proportional to its energy and the quasiparticle spectral
weight vanishes logarithmically at low energies. See text for details.
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glecting trigonal warping the band hamiltonian for balanced
bilayer graphene is

Ĥ = �
k�,�

k�2

2m
�̂k�

�,†�	z
� �
� · n̂k����̂k�

�, �1�

where the Pauli matrix 	z acts on the two-degenerate �K and
K�� valleys, k� is two-dimensional envelope function momen-
tum measured from the two nodal points K and K�, 
1, and

2 are Pauli matrices that act on bilayer graphene’s pseu-
dospin �layer� degrees of freedom, and �= ↑ , �↓ � accounts
for the spin degrees of freedom. The chirality of bilayer
graphene’s chiral 2DEG is captured by the unit vector n̂k�

= �cos 2�k� , sin 2�k�� where �k� =tan−1�ky /kx�. In Eq. �1� the

field operator �̂k�
�,†= ��̂K+k�,t

�,† , �̂K+k�,b
�,† , �̂K�+k�,b

�,† , �̂K�+k�,t
�,† � is a four-

component spinor where the low-energy sites3 are the top �t�
and bottom �b� layer sites without a near neighbor in the
opposite layer. The effective mass is determined by m
=1 /2v2�0.054me where v is the single-layer Dirac veloc-
ity and 1�0.4 eV �Refs. 3 and 10� is the interlayer hopping
amplitude.

The interaction contribution to the bilayer graphene’s
hamiltonian is layer dependent,

V =
1

2L2�
q�

�
�,��

�v+�q��̂−q
� �̂q

�� + 2v−�q�Ŝ−q,�
z Ŝq,��

z � , �2�

where �̂q
�=�k��̂k�+q�

†�
�̂k�

� is the total density per spin, Ŝq,�
z

=1 /2��̂q,�
↑ − �̂q,�

↓ � is the z component of the corresponding

pseudospin density operator in the K valley, with Ŝq
z →−Ŝq

z

in the K� valley, and v� are the symmetric and antisymmet-
ric combinations of the interaction potentials in the same
�different� layers vs=2�e2 /�q�vd=vse

−qd� with the layer
separation d=0.334 nm.

III. RESPONSE FUNCTIONS

The finite temperature noninteracting response functions
can be written as

���
0 �q,i�n�

= − g�
ss�
� d2k

�2��2

nF��s�k��� − nF��s��k� + q���

i�n + �s�k�� − �s��k� + q��
F��

ss��k�,k� + q�� ,

�3�

where g=4 accounts for the spin and valley degeneracy, �
=� ,Sz denotes the density and pseudospin density response
functions, s ,s�=� is the chiral band index, �s�k��=sk2 / �2m�,
nF��s�k��� is the Fermi-Dirac distribution and �k�,k�+q� is the
angle between the wave vectors k� and k� +q� . The angular
dependent matrix element for the density-density response

F��
ss��k� ,k� +q��=1 /2�1+ss� cos 2�k�,k�+q�� is different from the

pseudospin density response Fzz
ss��k� ,k� +q��=1 /2�1

−ss� cos 2�k�,k�+q�� due to the presence of the pseudospin op-

erator Ŝq
z �	z in Eq. �2�. Physically these form factors deter-

mine the relative weight of the interband �ss�=−1� and in-

traband �ss�=+1� excitation contribution to the density-
density and pseudospin density response functions.

For undoped bilayer graphene where the Fermi energy
lies at the neutrality point �i.e., �F=0�, the zero-temperature
density-density response is completely determined by inter-
band excitations where the product ss�=−1. Our low-energy
theory has a natural high-energy momentum cutoff given by
the bandwidth kc=�2m1, from dimensional analysis of Eq.
�3� it is clear that the zero-temperature density-density re-
sponse function ���

0 =gm / �2������q /kc ,mi�n /q2�, where
gm / �2�� is the constant density of states for parabolic dis-
persion, and ��� is a dimensionless scaling function. The
density-density response function is free of any divergences,
and sending the bandwidth kc→� just gives ���

0

=gm / �2������mi�n /q2�. Analytically continuing i�n→�
+ i� the respective real and imaginary parts of scaling func-
tion ��� are11 �y=m� /q2�,

Re����y� = log�4� +
1

2y
log	1 + 2y

1 − 2y
	 −

1

4y
log	1 + 4y

1 − 4y
	

+ log	 1 − 4y2

1 − 16y2	 ,

Im����y� = �
1 −
1

4y
��
y −

1

4
� − �
1 −

1

2y
��
y −

1

2
� ,

�4�

valid for ��0. It is important to note that the above expres-
sion is a function of a single scaling variable y=m� /q2,
contrary to the case of any two-dimensional system with a
Fermi wave vector kF where it is a function of two variables,
namely, m� /kF

2 and q /kF. This scaling behavior is a conse-
quence of the absence of a Fermi surface for neutral bilayer
graphene.

The imaginary part of the density-density response func-
tion �Im����q ,��=0 for ��q2 / �4m��, defines the edge of
the particle-hole continuum. For interband excitations this is
just given by the minimum and maximum values of �
=�k�+q� +�k�. The minimum energy for a particle-hole pair is
attained for �k�,q� =�, this can be seen by completing the
square and writing min���=1 /m��k−q /2�2+q2 /4�. The ex-
citation spectrum here ��q2 / �4m� is similar to that of neu-
tral graphene ��v�q� with the difference coming from
switch to a parabolic dispersion.

Within the RPA,12

v+
RPA�q,�� =

v+�q�
1 + v+�q����

0 �q,��
, �5�

we recover the static screening ��→0 limit of vRPA�q ,���
form of Ref. 13, with the Thomas-Fermi wave vector qTF
=g�me2� /� log�4�. Due to the positive-definite value of
Re���

0 �q ,��, bilayer graphene at the neutrality point ex-
cludes any plasmon excitations. The absence of a plasmon
mode is not unique for neutral bilayer graphene and is phe-
nomenologically similar to the case of neutral single-layer
graphene. In neutral single-layer graphene the density-
density response function vanishes inside the particle-hole
continuum thereby excluding plasmon excitations, techni-
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cally different from the case of bilayer graphene. Using the
continuity equation we can relate the optical conductivity to
the density-density response function. The RPA optical con-
ductivity �accounting for spin and valley degeneracy�,


��� = 4 lim
q→0

ie2�

q2

���
0 �q,��

1 + vq���
0 �q,��

=
e2

2�
, �6�

�restoring �� is purely real and frequency independent simi-
lar to the case of single-layer graphene. The optical conduc-
tivity is not influenced by interactions within RPA and retains
its universal value of e2 /2�.

IV. QUASIPARTICLE PROPERTIES AT T=0

The essential feature of a Fermi liquid is encoded in the
imaginary part of the quasiparticle self-energy �Im�� or in-
verse quasiparticle lifetime, which for a homogeneous 2DEG
gives Im����−�F�2log��−�F�. In the case of neutral bilayer
graphene the absence of a Fermi surface coupled with the
effect of the interband excitations invalidates such a descrip-
tion. In this section we calculate the imaginary part of the
quasiparticle self-energy for neutral bilayer graphene and
show that Im���k� for �k�→0 indicating non-Fermi-liquid
behavior.

First let us examine Fermi’s golden rule expression for
short-ranged �q independent� interaction uef f. This is a rather
crude approximation but as we argue below still gives the
essential features of the predicted non-Fermi-liquid behavior.
Based on Fermi’s golden rule the inverse quasiparticle life-
time can be expressed as

1

	+,k�
=

gmuef f
2

2�
� d2k�

�2��2 Im �
m��k� − �k�

�k� − k�� �2
�cos2 �k�,k�� . �7�

The �k dependence can be readily obtained by dimensional
analysis which gives 1 /	+,k� ��k; an exact calculation yields
1 /	+,k� =0.1076gmuef f

2 �k. The linear energy behavior only de-
pends on the fact that � is a function of a single scaling
variable y=m� /q2, which is a consequence of the scale in-
variance of neutral bilayer graphene, and is independent of
the detailed behavior of �. Bare Coulomb interactions would
give a different result, however screening dynamically gen-
erates a new scale qTF, below which interactions effectively
behave as short ranged. Based on the effects of screening and
independence of the inverse lifetime on the function � we
anticipate non-Fermi-liquid behavior in the long-wavelength
limit.

The retarded quasiparticle self-energy within RPA can be
written as

�s
ret�k,�� = �s

res�k,�� + �s
line�k,�� , �8�

following the line and residue decomposition of Quinn and
Ferrell.14 The quasiparticle self-energy within RPA remains
diagonal in the particle-hole basis. It can be shown that the
line contribution is purely real and does not contribute to the
imaginary part of Im�+

ret which for ���0�,

Im�+
ret�k,�� = �

s�=�

� d2q

�2��2v+��k� − q� ��
1 + s� cos�2�k,q�
2 �

�Im 1

���k� − q� �,� − ��q��
����� − ��q���� ,

�9�

where ��q ,��=1+v+�q�����q ,��. In the above expression
we have neglected the contribution of v− as it is logarithmi-
cally suppressed once screening effects are accounted for
within RPA. Dimensional analysis of Eq. �9� implies that
Im�+�k ,��= �k�2f�m� / �k�2 ,k /qTF�, where f is a two variable
function. Interactions introduce an inverse length scale �
=me2 /� which turns out to be the same order of magnitude
as the bandwidth cutoff kc. In the long-wavelength limit we
find that

Im�+
ret�k → 0,� → 0� =

�k�2

g2�m
h+
m�

k2 ���4m� − k2� . �10�

The scaling function h+�m� /k2� was numerically attained
and is plotted in Fig. 2. The theta function in �10� comes
from the particle-hole continuum and is independent of the
nature of interactions. Using the symmetry relations
Im�s

ret�k ,−��=Im�s̄
ret�k ,�� where s̄=−s it is clear to see

that Im�+
ret�k ,−�� gives similar expressions as Eq. �10� with

a different scaling function h−�m� /k2� plotted in the inset of
Fig. 2. The residue contribution to the real part of the re-
tarded electron self-energy Re�+

ret yields a similar expres-
sion, however the contribution due to �s

line is more singular
thereby dominating in the long-wavelength limit. We find
that ���0�,

Re�s
ret�k,�� = s

2k2

g�2m
log�

k��2

−
4�

g�2
log �

�m�
��2

+ ¯ , �11�

where “¯” represent the subleading terms. The expression
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FIG. 2. �Color online� Scaling function h+�y� for the imaginary
part of the electron self-energy with Coulomb interactions in the
long-wavelength limit plotted as a function of y=m� /k2. The inset
shows the scaling function h−�y� also plotted as a function of y
=m� /k2. �See text for details.�
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for ��0 can be attained by exploiting the symmetry rela-
tions Re�s

ret�k ,−��=−Re�s̄
ret�k ,��. The quasiparticle spec-

tral weight,

lim
k→0

Z+ =
1

1 − ��Re�+
ret�k,��

�
g�2

4

log�2m�

m

�

k
��−2

, �12�

vanishes logarithmically, whereas the effective mass m�,

m+

m+
� =

1 + m0�k2Re�+
ret�k,��

1 − ��Re�+
ret�k,��

→ 1, �13�

remains finite and is not renormalized by interactions. The
long-wavelength behavior of the spectral function A�k ,��
=A+�k ,��+A−�k ,�� plotted in Fig. 1 with

As�k,�� =
1

�

Im�s
ret�k,��

�� − �k − Re�s
ret�k,���2 + �Im�s

ret�k,���2
, �14�

was calculated from the leading-order behavior of the elec-
tron self-energy and neglecting regular contributions. Sym-
metry relations for the electron self-energy dictate that
A�k ,��=A�k ,−��.

The linear dependence of the Im � on the quasiparticle
energy predicted above is different form the case of neutral
single-layer graphene. In neutral single-layer graphene due to
the lack of screening associated with the Dirac point the
Fermi velocity develops a logarithmic enhancement.5 For
neutral graphene this logarithmic velocity enhancement im-
plies that Im ������ / �log ��2 which is smaller than
Im ������. In contrast to single-layer graphene interac-
tions in bilayer graphene are screened, as we have shown and
has been pointed out in the literature15,16 with Thomas-Fermi
screening, that the quasiparticle dispersion in bilayer remains
quadratic. Most of our analysis of quasiparticle properties in
neutral bilayer graphene has relied on the fact that
���

0 �q ,����0 �i.e., it has a scaling behavior after sending the
bandwidth kc→��. In the next section we identify this re-
gime of non-Fermi-liquid behavior at finite temperature.

V. REGIME OF NON-FERMI-LIQUID BEHAVIOR

Weak interlayer hopping leads to trigonal warping of the
band structure in bilayer graphene.3 The temperature associ-
ated with this effect can be estimated by calculating the en-
ergy scale at which trigonal warping effects compete with the
quadratic dispersion kept within our model. Using the bare
parameters of graphite 3�0.10 �Ref. 10� we can estimate
that the temperature below which the trigonal warping effect
becomes relevant is T1�40 K. Below this scale the electron
dispersion crosses over from quadratic to linear, and the sys-
tem behaves like single-layer graphene, and our results no
longer apply. Recently there has been discussions of
interaction-driven spontaneous symmetry breaking in neutral
bilayer graphene in the absence of trigonal warping, due to
the marginal relevance of weak short-range repulsive
interactions.7,8 Since the interaction is only marginally rel-
evant, the transition temperature Tc into the possible broken-
symmetry phases are exponentially small. The non-Fermi-
liquid behavior discussed here thus applies to temperatures
above the higher of Tc and T1. Our analysis can be extended
to finite temperatures, again dimensional analysis dictates
that the polarization function have the scaling form
��m� /kBT ,m� /q2�. From a simple scaling analysis of the
electron self-energy we conjecture that for temperatures T
�max�T1 ,Tc�,

Im� � � � � � kBT

kBT kBT � �
� �15�

indicative of non-Fermi-liquid behavior. In this Rapid Com-
munication we have analyzed the regime k�qTF, in the op-
posite regime k�qTF one can show that the non-Fermi be-
havior becomes even more pronounced as screening effect is
less significant.
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